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Linear Analysis of a Simplified Semi-implicit Model with Some Ideas
Given Regarding Geostrophic Adjustment, Small Grid Length Modeling,
and Vertical Resolution.

1. Introduction

Various approximations have been used in numerical weather
prediction models to allow the maximum useful time step, with economy
being the guiding force. Among the approximations used are:: the hydro-
static approximation--removing acoustic waves, the quasi-geostrophic
approximation——removing gravity waves, and semi-implicit time differencing—-
slowing down the phase speeds of gravity waves. In all cases it has been
argued that the motions that were removed or whose accuracy was affected,
were not essential to the meteorologically important fields.

 This note will consider some of the effects of the semi-implicit
time differencing. This method amounts to a time averaging of terms in
the equations of motion that are responsible for gravity wave motion,
thereby slowing them down. As a result, a longer time step may be used.
This note will concentrate on the. limitations of this method, particularly
for high-resolution models.

Office Note 155 gave the equations for a semi-implieit slab model.

The model was used there to test certain solution algorithms, and it

will be used in the future to check some of the conclusions of this note
by actual fumerical calculation. In this note the equations are linearized
and the phase speeds of the waves are examined as a function of the time
step, the horizontal scale, and the vertical structure. Comparisons are
made between the analytic phase speeds and group velocities and the

phase speeds and group velocities calculated by wvarious time differencing.

2. Linear analysis of the semi-implicit model
The reader is referred to Office Note 155 for the model equations

in finite-difference form. Only their linear counterpart will be given
here. They are
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where u is the west wind speed; v is the south wind speed; 8° is the
deviation of potential temperature from the mean; ¢~ is the deviation
of the geopotential from the mean; w is the total derivative of
pressure with respect to time; ag is the surface value of the specific
volume; k is an index for the model layer and all other variables have
their usual meanings. Fig. 1 shows the arrangement of model variables
in space. L is the number of layers. And @kp = déx/dp. Also,

O2F = 4L )T 4 ( )T-1] (8)

The vertical variation of variables is separated from the horizontal
and time variation by introducing
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Introduce (9), use (10), and make the following definitions:
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Then (1)-(6) become
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- We further define
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The set of equations, (12)-(17) and (7) can be reduced to a set of
L equations in the L unknowns 61,65,...,$£. That set of equations is

[c,2- g2 + -k i 2Ty + 2(-D)F

ksl ; —
I Davy? + -17 ¢, 2145

j=1

L
k 2 2 . TT = -
+ ) [-D 4% - 26 rjk]¢j =0, k=1,2,...,L

where

j=kt+1

52 - £2Ke2A%2

C*z = C22*2At2
2 - _1 a
Ck = % cpAﬁkSkpApk
Yk2 = - aghpy
Ap.
= N
Touq = —b
ik Apk

Equation (19) can be written conveniently in matrix form as
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where

@T = f$1;$é,...,$i) (éT is ¢ transpose)
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In (25), C, is the phase speed of gravity waves on a non-rotating earth.
According to (20) and (11)
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From this equation, we may solve for oAt,
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this will be true for
LA '
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This is the stability criterion for this model.
It can be shown that if (28) is satisfied, the C, is real. Suppose

(28) is satisfied. Then, from (27)
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and therefore C;Z 20, implying that C, is real.

The values of C2 which satisfy (24) are called elgenvalues of A.
In all cases of interest, there will be one real value of C+ for each
model layer. The values will depend upon the basic state “temperatures
and upon f, %, Ay, and At.

The values of C* in specific cases of interest will be given later,
but now let's consider (27) in much fuller detail, assuming that the
values of C;Z are known. Note that (27) can be put in non-dimensional
form by letting
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The result is:
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Q represents the angular displacement (in radlans) of a wave in one
tlme step. On the other hand, the analytic angular dlsplacement Ry, 1s

1.
o, = (T2 + 72)% (32)
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r2 = ¢, 2922 Lo
‘ _ - (33)
F2 = £2p¢2

This relationship can be seen from (26) by letting At,Ay»0. Figure 2
shows Qa. Figure 3 shows Qc. And Figure 4a-4d shows Qc/Qa. Tn several
of these and succeéding figures, dashed lines will be shown, They are
lines along which [/F or I./F, is constant. Moving along one of these
lines shows the effect of changing At only. In Figure 4a, horizontal
differencing is disregarded so that T'= I, and F=F,, while in Figures
4b~4d  the difference between T' and T and between F and F, is taken
into account. An additional parameter is introduced by the horizontal
differencing, namely Ay/)\, where A, the "radius of deformation” is
defined by ‘ s

The radius of deformation is related to the size of the circle of a
particle in pure inertial motion. Therefore, Ay/A = 1/32 represents a
good resolution of inertial motions. Ay/)‘— i represents moderate
resolution, and Ay/X = 1 represents poor resolution of inertial motions.
In Figures 4b-4d the value of Ay/)\ is 1/32, 1/4 and 1, respectively.
Almost all discussions will be in terms of ba, which can be considered
to be the limit of Ay/A -+ 0, but the reader can make other comparisons
as desired.

~ Let's consider Figures 2-4 in detail. Flgure 2 gives the angular
displacement, of a wave with a particular C* , in one time step. Since
the analytic phase speed does not depend upon At, the displacement is
merely proportional to At. This may be seen by following any dashed
line in Figure 2. We may delineate three regions in the I'-F plane.
For T'/Fz2 it is found that Q is roughly proportlonal to 'y i.e,, to 2Cs.
Waves in this region are predominantly gravity waves. On the other
‘hand, within the region where T'/FS1/3, it is found that Q is nearly
independent of I'. These waves are predominantly inertial waves. Between
these regions are waves of mixed form.

In order to give a concrete basis to this classification, Table 1
has been formed which lists values of R=T'/F for typical scales of atmo-
spheric motions. The table also lists the implied predominant wave form.



Table 1

Low latitudes: f = 0.3 x 10~ %s™1

external wave internal wave
cx=350 ms=l- - | cu= 100 ms~!
Mesoscale: & = 107° p~! R = 117 gravity| R = 33 gravity

Synoptic scale: & = 1076 p~1 R=11.7 gravity| R = 3.3 gravity

. Global scale: % = 3 x 10~7 n-! R = 3,5 gravity R = 1.0 mixed
High latitudes: f = 1.2 x 10‘%&5“1
i external wave internal wave
¢y = 350 ms—! ce = 100 ms~—!
Mesoscale: % = 1075 m"‘1 IR = 29.2 gravity| R = 8.3 gravity
Synd@tic scale: ‘2 = 1076 n~1 R =2.9 gravity| R = .8 mixed
Global scale: £ = 3 x 1077 m~{R = .9 mixed R = .25 inertial

It is pointed out that the conclusions of Table 1 are severely limited
on the global scale, since the variation of the Coriolis parameter has
not been included in this analysis.

Figure 3 shows the computed angular displacement per timestep for
the semi-implicit modes. For Fy £ 0.5 and for T/F < 1/3, the displace-
ments compare very favorably with the analytic displacements. The
errors in this region are less than 5%. Outside this region, two
factors lead to error. First, for Fx - 1.0, all displacements approach
m/2. This is connected with the stability criterion. And secondly, for
I'y greater than about 1.0, the semi-implicit differencing greatly slows
down the waves. These waves are seen to be predominantly gravity waves.
Since one of the usual objectives of the semi-implicit formulation is to
slow down gravity waves so that they can be stably calculated with a
longer time step, this objective is met. It would be desirable to limit
Fix to less than .5, however, so that the inertial waves are calculated
accurately. :
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Figure 4 emphasizes these points by giving the ratio Qc/Qa. By
following a dashed line we may see the effect of varying the time step,
with‘all other parameters fixed.

Figure 5 shows the calculated angular. displacement for a model
that is identical to the semi-implicit model except that centered
(leapfrog) time differencing is used. Figure . 5a—-6d shows the ratio
QE/Qa for various values of Ay/A. Figure 6a gives the limit for small
Ay/). It is this figure that will be primarily discussed.

It is seen that the explicit model generally calculates phase
speeds in excess of the analytic phase speed. The only exceptions are
waves of relatively few grid lengths in size. This can be seen in

- Figures 6b-6d. For P*z + F*2 < L4, the explicit model errors are
generally quite small. There is no distinction in the time-differencing
effect between inertial and gravity waves. Comparison with Figure 4
shows that, even within the region I‘*2+F*2 < )%, the semi-implicit time
differencing selectively damps the gravity waves. Both methods have
nearly the same effect upon the inertial waves. Since the inertial
waves are treated explicitly by the semi-implicit model, this is to be
expected. A reduction of time-step for the explicit model uniformly
increases the accuracy of the gravity wave and inertial wave phase

© speeds, except for the shortest waves for which the space differencing
. error is overwhelming. ’ '
3. Group velocities

Not only are phase velocities important for the accurate . calculation
- of meteorological fields, but group velocities are also, for energy,is
propagated at the group velocity speed. For the problem of geostrophic
adjustment, the adjustment cannot progress at a greater speed than the
group velocity of the waves participating in the adjustment.

The following equations give the analytic group velocity, the group
velocity for the semi-implicit model, and the group velocity for a
corresponding explicit model. The model group velocities include the
effect of spacial differencing.

analytic

T TR+ EE (/2 + DT

(34)



semi~-implicit

ddc F*C*

= ] Ayy 2
@ aET el - Ty?- Fx21 [costay - (53)°] (35)

explicit (leapfrog)

do T.C (1 = Fi2)% 1+ Ta2 poy2

E = x% % % Ay~~
s T T [costhy - ——— (84} ] (36)
de (Ta2+ FH)2 1+ 7,2 VTR (zx)

The analytic group velocity depends only upon two parameters,
e.g., (T/F) and Cy- The semi-implicit and explicit group velocities,
‘on the other hand, depend upon four parameters, which may be taken to
be Fg, T'x, Ay/X, and C,. LAy is not an additional independent
parameter since

17 A . '
24y = 2 sin"1{% X%?%i), where A = %* - (37)

The errors of the model group velocities are rather complex.
Figures will be given which show the ratio of the model group velocity .
to the analytic group velocity for three values of Ay/A, namely 1/32,
1/4, and 1.

First, the analytic group velocity, relative to Cy is given in
Figure 7. It is only a function of T'/F as expressed by eqn. (34).
For grav1ty waves, do/d% 2 .9Ci. For mixed waves .32Cx 5 do/df £ .9Cx.
And for inértial waves do/d2 < .32Cx. :

_ Figures 8a to 8c show the semi-implicit model group velocities
divided by the analytic group velocities, for Ay/A = 1/32, 1/4, and 1.
First, notice the changes for each model as Ay/X increases. For both
models, the largest changes are to the gravity waves. Indeed, for
Ay/A = 1, any gravity waves are mnear .two grid increments in wavelength
Both models have large negative group velocities for these waves. In
general, waves between 2 and 4 grid lengths long have negative group
velocities. Further, both models have very large (+ or -) group
velocities near the model stability limits.

There are some basic differences between the two model group
velocities. The semi~-implicit group velocity decreases as Fx increases
(except for very small Fy) while the éxplicit model group velocity
increases as Fx increases (except for very small Fx). The same was
shown earlier to be true of the model phase velocities. Other comparisons
are left to the reader. .
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4, Applications

The following paragraphs will consider some appllcatlons of the

- semi~implicit model analysis:

a. Small grid length models

Smaller and smaller grid lengths are used in numerical models
in order to reduce the truncation error. The objectives are at least
two-fold: (1) to reduce the error in calculation of a
feature with given wavelength, and (2) to be able to include smaller
and smaller features with reasonable accu¥acy. : These objectives will be
considered one at a time.

First Wlll be considered the phdse speed error reduction as Ay
is reduced while At is fixed. Figure 4 shows Qc/fa. As Ay is reduced,
Fy will be reduced as given by Fx = fAt cos 2Ay/2. The reduction to F*

Ty _ 1 sinfAy/fAy (38)

F, F Cos&A}’_

and (31n2Ay/£Ay) + cos 2Ay/2 1 in the range 0 RAY S ﬂ/Z Thls means that
we may follow a line along PJ/F* = const. (dashed 11ne) towards the origin
to see how fc/Qa changes as Ay is reduced. Unfortunately, Ay/X also

changes proportionately and so we must flip between 4b, 4c, and 4d while

we are following a T*/F*—-const line towards the origin. With some manual

" dexterity, the result is seen (as expected): a reduction of Ay uniformly

leads to greater accuracy of phase speeds. Figure 6 shows the same thing
to be true for the explicit model. Also, Figures 8 and 9 show that the.
group velocities are also improved by reducing Ay.

A second objective of reduction of grid length is to be able to
include smaller features in the calculation.. Hopefully, the phase speed
of the smallest well-resolved scale would remain of comparable accuracy
as the grid length is reduced. For the semi-implicit model, this must be
a limited objective since the smallest atmospheric scales represent gravity
waves and they are a priori to be poorly calculated by the semi-implicit
formulation. One must determine from physical principles at what point
in the reduction of Ay this second objective is no longer valid. For now,
let's consider it to be valid. o
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The semi-implicit stability criterion (28) implies that At
need not be reduced as Ay is reduced. Let's consider how Qc/fQa and
doo/d&/+ do /dz change as Ay is reduced with 2Ay and At held constant
(i.e., Ty 1ncreases with Fy fixed). Figure 10 has been prepared to
show a particular example. In this example, Fy = 0.5, Ty = 1/32 is
the starting point. Also included are the changes to QE/Q and
ch/dz dca/d2 under the same variation of Ay with Ay and At fixed.
As expected, the explicit model becomes unstable when T, 2 4+ F.o = 1.
The accuracy of the semi-implicit model does not change much until
the waves considered fall near the gravity wave region. Then the.
accuracy falls sharply.

Actually it is not possible to leave the time step fixed while
Ay is reduced in the semi-implicit model. This is because the basic
wind speed has been neglected in the linear analysis. The stability
criteria for the semi~implicit and explicit models should be replaced
by somethlng like the follow1ng

__models.

e S
0= (£2 + Ez)’Atcz 21 semi-implicit (39)
and
(o 2 + u2 2
0< (£2 + _"‘_A.}TZ__;)AtE < 1 explicit (40)

where AtC and AtE are the time steps in the semi-implicit and explicit

It is rather difficult to see in general how the accuracy of

. the phase speeds and group velocities change as Ay is reduced while

(f2 + u2/Ay?) te 2 and (f2 ¥(u? + c*)/AVZ)AtE remain fixed, but a
calculatlon from the same starting point as for Flgure 10 (F* = 0.5,

= 1/32) shows the accuracy to be greatly improved. It is presumed
that this is true in general.

Another question is whether the time step advantage of the
semi-implicit model is changed by a reduction of Ay. It is-noted that

' 2 A2 2 214 _
e e A iy 1)
E £2Ay2 + u? Ap

where A, = (szy + u?)At,. and Ag = (£2Ay2 + u? + C*Z)AtE. Both A, and

- and Ap are presumed to becheld constant. " They represent the proportlon

of the maximum allowable time step that is used. In the limit,
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Ay + o, it is seen that the stability limits for the two models become
the same. Therefore, A. and Ay must be close to each other. It will
be assumed that they are identical, Thus,

(42)

thte | [£209% + Cx? + u?)
Aty £2Ay2 + u?

Table 2 shows Atc/AtE for some values of interest. It is the largest
Cx and u  that must be used in (42).

Table 2. Atc/Atg

f=1.0 x 107% s71, G, = 300 m/s, A, = Ag.

u=50ms!|u=100ms"!
Ay + @ 1.00 1.00
Ay = 381 km 4,88 2.98
Ay = 190.5 km | 5.70 3;11
Ay - 0 ' 6.08 3.16

The effect of the maximum windspeed, u, is clearly illustrated
by this example. It also shows that the time step advantage. of the
. semi-implicit model increases slightly as Ay is reduced below "1 Bedient."
However, once Ay is reduced to the point at which all desired scales are
adequately resolved, it is most efficient to obtain additional accuracy
by going to a higher order space differencing scheme rather than by
further reduction of Ay.

b. Geostrophic adjustment

The gravity-inertia waves of the atmosphere act in a way to
mutually adjust the mass and wind fields to an approximate geostrophic
balance:. In a numerical model of the atmosphere, much of the imbalance
can be described as noise, since it is unrelated to any physical
generator of imbalances. It is usually desirable to eliminate the
noise by smoothing or diffusion. At the same time, we might want to
try to retain any physical adjustment process. Table 3 lists some
physical phenomena that are believed to produce appreciable imbalances
in the atmosphere. The tablé lists the phenomena, their typical wave-
length, C,, and T'/F = fc*/f.
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Table 3.

Phénomenon A (m) C*(m/s)‘ T/F
Rapidly deepening systems 2 x 106 300, 60 9, 1.8
Low-1ével fet ’ 5:x 105 10 1.2
Jet stream ' 10° 10 .6
Mountain waves 2 x 104 30 90
Thunderstorms 2 x 1o* 50 150
Boundary layer phenomena 5 x 10° 10 1.2
Winds with large curvature 2 x 108 60 1.8

Those phenomena in the table with T'/F £ 1 will be treated nearly the
same by an explicit or semi~implicit model, provided Ay/Xx << 1. It
is the phenomena with T'/F > 1 that are of concern here, Within this
class are rapidly deepening systems, low-level jet, mountain waves,

~ thunderstorms,; boundary layer phenomena, and winds with large curvature
(supergeostrophic winds). Our maximum time step will be determined

by which of these phenomena we may wish to calculate accurately. At
present ‘there is no agreement on{QhéEhéf‘the gravity waves set up by
imbalances need to be accurately calculated. Some experiments with the
semi-implicit model are designed to make this decision. Attention is
again drawn to the fact that short grid length waves have group
velocities that are small or negative. This feature is not inevitable
with all models, however. <(See Mesinger and Arakawa, 1977, p. 43 f£f})

——

5. Solutions for C,

Table 4 shows the Xalues of [C*I for a six-layer model with

Standard Atmosphere temperatures. The model top is at 100 mb and the

layers have equal pressure thicknesses. Figure 11 shows the shape of
the eigenvectors. Their shapes are very similar to those of empirical
orthogonal functions derived from geopotentials. However, the first
empirical function peaks more strongly near 200 mb. The model structure
shown here will be used in the semi-implicit experiments of geostrophic
adjustment.
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Table 4. |cs| for 6~layer model

Mode lcx| Cm/s)
1 ©290.78
2 62.69
3 126.33
4 14.54
5 8.16
6 : 3.76

One largely unanswered question in numerical modeling is the
amount of vertical resolution needed. This linear analysis can be
used to shed some light on this problem. It was felt that reasonably
few layers would be sufficient to give good phase speeds for the first
few modes for a Standard Atmosphere temperature profile, making this
profile a rather uninteresting one for experimentation. Therefore,
an actual atmospheric sounding was used for this question instead.
The data is for Greensboro, N.C., 12Z 9 Dec. 1973, Figure 12 shows the
temperature profile. It includes stable layers near 700 mb and 400 mb,
which would be missed in models with gross vertical resolution. Figure
13 shows how the values of |C*| vary with the number of model layers
(6, 10, 20) for the first several modes. It is found that the values
of IC*‘ do not vary by more than 107 for the first four modes for ten
or more layers.

Figure 14 shows how the first six eigenvectors change as the
number of layers is increased from 6 to 10 to 20. Figure 15 shows the
errors in the temperature profiles for 6, 10, and 20 layer models. The
temperature is assumed to vary linearly with &n p to obtain differences
with the observed temperatures. Already a 6-layer model presents the
gross characteristics of the temperature profile, including a suggestion
of the stable layer near 700 mb. Naturally, the 10 and 20 layer models
do much betterw. However, even the 20-layer model has only a suggestion
of the stable layer near 400 mb. The conclusions to be drawn are left
to the reader. Clearly, the conclusions will depend upon the phenomenon
to be modeled.
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I VétkSummary
This note has shown the linearized perturbation equations for a
two~dimensional semi-implicit forecast model on an f-plane. From these
equations the frequency equation was derived. The vertical structure
and eigenvalues of the vertical matrix (which are phase speeds squared)
were shown for a Standard Atmosphere temperature profile. The group

velocities were also shown. For comparison, the same parameters were
calculated for an explicit model with centered time differencing.

The results were applied to a discussion of grid length reductiom,
geostrophic adjustment, and vertical resolution. It was emphasized
that the conclusions to be drawn depend critically upon the intended
model use. Some conclusions will be drawn in the future from nonlinear
numerical experiments with the semi-implicit model in comparison with
the explicit model.
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